Chapter 1

1.1.1:

1-3. Shapes (a), (c), (d), and (e) are rectangles.

1-4.	a:	40	b: -6	c: 7	d: 59
1-5.	a:	y = x + 3	b: $y = -x^2$	c: $y = x^2 + 3$	d: $y = 3x - 1$
1-6.	a:	22a + 28	b: $-23x - 17$	c: $x^2 + 5x$	d: $x^2 + 8x$

1-7. Possibilities: goes to bank, gets money from parent, gets paid; buys lunch, goes shopping, pays a bill, ...

1.1.2:

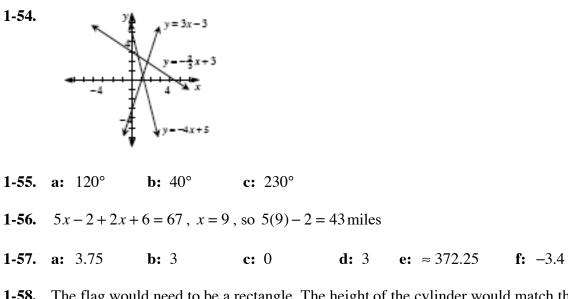
- **1-14.** Answers vary. Possible responses include "How many sides does it have?", "Does it have a right angle?", "Are any sides parallel?"
- **1-15.** Answers vary. Possible responses include "They have 3 sides of equal length" and "They have 3 angles of equal measure."
- **1-16. a:** 3 **b:** 2 **c:** 4

1-17. a: x = -7 b: c = 4.5 c: x = 16 d: k = -7

1-18. a: 12 b: 35 c: 24 d: 7

1.1.3:

- **1-25.** c is correct; x = 7
- **1-26.** No. If the points are collinear then they will not form a triangle.
- **1-27.** y = x 3
- **1-28. a:** 55.5 square units **b:** 42 square units


1.1.4:

- **1-32.** a: $x = \frac{9}{24} = \frac{3}{8} = 0.375$ b: no solution c: $x \approx 6.44$ d: x = 0.5
- **1-33.** Yes, his plants will be dead. If his plants are indoors, they will be dead because he will be gone for 2 weeks and so he did not water them at least once a week. If he left them outdoors, they will still be dead because it has not rained for 2 weeks, so he needed to water them once a week as well.
- **1-34.** a: $y = \frac{2}{3}x 4$ b: $y = -\frac{5}{2}x + \frac{7}{2}$
- 1-35. 104 sq. mm
- **1-36.** a: $-\frac{3}{5}$ b: $\frac{6}{3} = \frac{2}{1} = 2$ c: $-\frac{3}{6} = -\frac{1}{2}$ d: $\frac{0}{7} = 0$

1.1.5:

- **1-42.** a: 100° b: 170° c: 50°
- **1-43.** The graph should be a line with y-intercept (0, 2) and x-intercept (-2, 0).
- **1-44.** Perimeter: 74 centimeters, Area: 231 cm²
- **1-45.** a: y = 5 b: r = 12 c: a = 6 d: m = 5
- 1-46. While there are an infinite number of rectangles, possible dimensions with integral measurements are: 1 by 24 (perimeter= 50 units), 2 by 12 (perimeter= 28 units), 3 by 8 (perimeter= 22 units), and 4 by 6 (perimeter= 20 units).

1.2.1:

1-58. The flag would need to be a rectangle. The height of the cylinder would match the height of the rectangle along the pole, and the cylinder's radius would match the width of the rectangle.

1.2.2:

1-63. yes, yes, no

1-64.	a: reflectionc: rotation or rotation and t	b: translation (or two reflect ranslation	tions over parallel lines)
		ranslation depending on the p f: reflection and then transl	
1-65.	19 + 7x - 4 + 10x + 3 = 52	so $x = 2$. Side lengths are 19,	10, and 23.
1-66.	a: Area ≈ 16 square units	b: Area ≈ 15 square units	
1-67.	a: -4	b: 25	c: -2

1.2.3:

1-73. a: a square **b:** 81 square units c: A'(3,-5), B'(-6,-5), C'(-6,4), D'(3,4)**1-74.** a: *x* = -4.75 **b:** x = -94 **c:** $x \approx 1.14$ **d:** a = 22**1-75.** *y*-intercept: (0, 6), *x*-intercept: (4, 0) **1-76. a:** $y = \frac{4}{3}x - 2$ **b:** The resulting line coincides with the original line; $y = \frac{4}{3}x - 2$ **1-77.** -14 1.2.4: **1-82.** \$450 **b:** (3,-3) **c:** (-2,-7) **d:** (-52,1483) **1-83.** a: (9,3) **b:** 20 square units **1-84.** a: 10 square units d: 208,680 square units 1-85. a: b: в А P d: c: C D

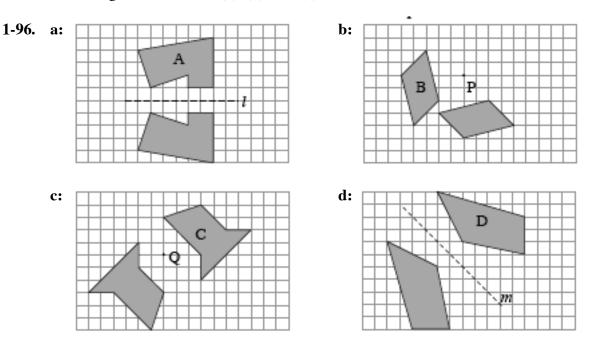
1-86. a: The orientation of the hexagon does not change.

- **b:** The orientation of the hexagon does not change.
- **c:** There are 6 lines of symmetry, through opposite vertices and through the midpoints of opposite sides.

1.2.5:

1-94. a: heart

1-92. (a) and (b) are perpendicular, while (b) and (c) are parallel.


b: square

1-93. a:	One possibility: $4(5x+2) = 48$	b: $x = 2$	c: $12 \cdot 12 = 144$ units

c: hexagon

d: Answers vary.

1-95. The triangles described in (a), (b), and (d) are isosceles.

1.3.1:

1-99. Carol: only inside circle #2; Bob: outside both circles; Pedro: only inside circle #1. In order to belong to the intersection of both circles, a person would need to have long hair and study a lot for class.

1-100. a: $x = -\frac{9}{33} = -\frac{3}{11}$ b: x = 5 and $x = -\frac{3}{2}$ c: x = 1 d: $x = \frac{12}{13}$

1-101. a: It looks the same as the original. b: Solution should be any value of 45k where k is an integer. c: circle

1-102. a: (-6, -3) b: The vertices are (6, 2), (2, 3), and (5, 6) c: (8, -4)

1-103.
$$y = 3x + 2$$

1.3.2:

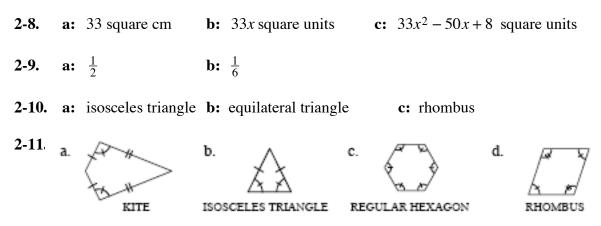
1-110. rectangle and square

1-111. Answers vary.

1-112. a:	isosceles triangle	b: pentagon	c: parallelogram
d:	obtuse scalene triangle	e: isosceles right triangle	f: trapezoid

1-113. REFL ONLY: A, B, C, D, E, M, T, U, V, W, Y ROT. ONLY: N, S, Z INTERSECTION: H, I, O, X OUTSIDE BOTH REGIONS: F, G, J, K, L, P, Q, R

1-114. D


1.3.3:

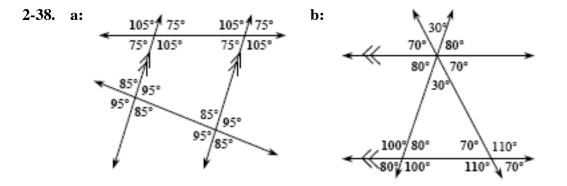
- 1-121. an isosceles right triangle
- **1-122.** $\frac{1}{535} \approx 0.0019$ No, this probability is very small.
- **1-123.** a: $\frac{1}{4}$ b: $\frac{3}{4}$ c: $\frac{2}{4} = \frac{1}{2}$
- 1-124. a: Yes, it is correct because the two angles make up a 90° angle. b: $x = 33^\circ$, so one angle is $33 - 10 = 23^\circ$ while the other is $2(33) + 1 = 67^\circ$ c: $23^\circ + 67^\circ = 90^\circ$

1-125. The graph is a parabola with roots (-3, 0) and (1, 0), and y-intercept at (0, -3).

Chapter 2

2.1.1:

2-12. Answers vary. The left circle could be "equilateral", and the right could be "quadrilateral". Assuming this, you could add an equilateral hexagon to the left, a rhombus to the intersection, and a rectangle to the right circle.


2.1.2:

- 2-18. a: Vertical angles, congruent, 3x + 5° = 5x 57°, x = 31°
 b: Straight angle pair, supplementary, 2x + 4x + 150° = 180°, x = 5°
- **2-19.** a: $m \measuredangle B = m \measuredangle C$ because the line of symmetry must pass through A (according to the marked sides of equal length) and these angles are on opposite sides of the line of symmetry.
 - **b:** Since they are equal, $m \measuredangle B = \frac{1}{2}(124^\circ) = 62^\circ$.
- **2-20.** a: square b: (-4,5), (1,5), (-4,0), (1,0)
- **2-21.** y = x 1; No, because $1 \neq 3 1$
- **2-22.** a: Vertical; they are equal. b: They form a "Z."

2.1.3:

2-29.	a:	(-2,3) b: $(-2,3)$, yes				
2-30.		20 square units 2,600 square units; subtract the x and y -coordinates to find the length of the two sides.				
2-31.		We do not know the angles are equal, because we do not know if $\overrightarrow{BD} \ \overrightarrow{EG}$. The diagram does not have parallel line marks.				
2-32.		x = 17.5 (corresponding angles) x = 5 (multiple relationships can be used)				
2-33.	a:	an isosceles triangle b: a rectangle				

2.1.4:

2-39. The slopes are $\frac{2}{3}$ and $-\frac{3}{2}$. Since the slopes are opposite reciprocals, the lines must be perpendicular.

2-40. (3,-1), (7,-1)

- **2-41.** They used different units.
- **2-42.** The lines are parallel, so they do not intersect. Therefore, there is no solution.

2.1.5:

2-51.	$x = 7^{\circ}$									
2-52.	a: $x = 10$	units	b: $x = 0$	6		c: $x = 20^{\circ}$)	d:	x = 10	0°
2-53.	a: $x = 4a$	and $y = 18$		b	: $x =$	-13 and y	= 6			
2-54.	a: Should b: $-\frac{4}{3}$	l be triangle				-			length	n 3
2-55.	2									
2.2.1	•									
2-61.	They are a	ll isosceles	triangles	•						
2-62.	Reasoning	will vary.	<i>a</i> = 118°	, <i>b</i> = 11	8°, c	= 32°, <i>d</i> =	= 32°			
2 (2	1.50		100		100)	2 0 5 00	T.		•1 .	1

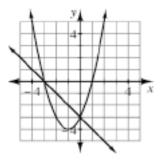
2-63. a:
$$15^{\circ}$$
 b: $x = 12^{\circ}$, $m \measuredangle D = 4(12^{\circ}) + 2^{\circ} = 50^{\circ}$ c: It is equilateral.

2-64.
$$A'(-6,-3)$$
, $B'(-2,-1)$, and $C'(-5,-7)$

2-65. a: $y = -\frac{2}{3}x + 3$ c: $y = \frac{1}{2}x + 5$ values. b: Yes, because the slopes are opposite reciprocals. d: Any equation of the form y = -2x + b for all real b

2.2.2:

- **2-70.** a: $8x^2 26x 7$ c: $4x^2 - 47x + 33$ b: $10x^2 + 31x - 14$ d: $-6x^2 + 17x - 5$
- **2-71.** area = 28 square units
- 2-72. a: x = 8°, right angle is 90°
 b: x = 20°, straight angle is 180°
 c: x = 20°, sum of angles in a triangle is 180°
 d: x = 60°, sum of angles in a triangle is 180°
- **2-73.** Daniel is correct because the definition of a rectangle is a quadrilateral with four right angles. Since a square has four sides and four right angles, it must be a rectangle.
- **2-74.** a: $\frac{4}{52} = \frac{1}{13}$ b: $\frac{13}{52} = \frac{1}{4}$ c: $\frac{1}{52}$ d: $\frac{39}{52} = \frac{3}{4}$


2.2.3:

- **2-81. a:** $y = -\frac{6}{5}x + 4$ **b:** $y = \frac{1}{2}x 2$
- **2-82.** The unshaded triangle is half the area of the rectangle (.5(8)(17) = 68 sq. in.), so the shaded area is the other half.
- **2-83.** a: Because when you are not standing up straight, you have changed your height, and you will not get a true measure of your height.
 b. Diagram (1) is correct.
 - **b:** Diagram (1) is correct.
- **2-84.** a: If it rains, then Mr. Spelling is unhappy.
 b: If you add two even numbers together, then the result is even.
 c: If it is Tuesday, then Marla has a piano lesson.

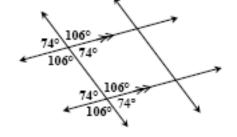
2.2.4:

2-90.	a:	$7^2 = 49$ sq. cm	b:	0.5(10)(4) = 20 sq. in.
	c:	0.5(16+8)(6) = 72 sq. ft.		

- **2-91.** a: $15x^2 + 21x$ c: $3x^2 - x - 10$ b: $x^2 + 5x + 6$ d: $10x^2 - 3x - 4$
- **2-92.** See graph; (-3, 0) and (0, -3)

- **2-93. a:** Isosceles Trapezoid because two sides are parallel and the other two sides are the same length.
 - **b:** A'(7,-2), B'(8,-4), C'(2,-4), D'(3,-2)
 - **c:** 10 square units
- **2-94.** a: $\frac{12}{52} = \frac{3}{13}$ b: $\frac{20}{52} = \frac{5}{13}$ c: $\frac{2}{52} = \frac{1}{26}$ d: 0

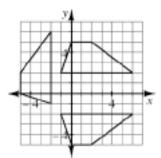
2.3.1:


- **2-100.** a: $\sqrt{68} \approx 8.2$, since $\sqrt{64} = 8$, then $\sqrt{68}$ must be a little higher. b: (1) 2.2, (2) 9.2, (3) 7.1, (4) 4.7
- 2-101. 17 units
- **2-102.** a: 6x + 6 b: 6x + 6 = 78, so x = 12 and the rectangle is 15 cm by 24 cm. c: $(2 \cdot 12)(12 + 3) = 360$
- 2-103. a: If a polygon is a parallelogram, then its area equals its base times its height.
 b: "If a polygon is a triangle, then its area equals one half its base times its height." Arrow diagram: *Polygon is a triangle → area of the polygon equals one-half base times height*.
- **2-104.** No, it would take 10 months for Sarita to catch up to Berti.

2.3.2:

2-109. 10 units

2-110. $y = \frac{6}{5}x - 3$ **b:** $y = -\frac{1}{4}x + 4.5$ **c:** $y = \frac{1}{3}x$ **d:** y = 2


2-111.

2-112. a: 1 b: $\frac{3}{8}$ c: $\frac{5}{8}$

2-113. a: It is a trapezoid because it has two parallel sides.
b: A'(-2,-1), B'(-5,0), C'(-5,2), D'(-2,6)
c: A'''(1,2), B'''(-2,5)

d: $\frac{1}{2}(3)(2+7) = 13.5$ units

2.3.3:

- **2-118.** a: (1) (5,3); (2) (2,-6) b: $p: y = 2x + 8; q: y = -\frac{1}{2}x + 3$ c: The solution should be (-2,4).
- 2-119. a: right triangle; slopes are opposite reciprocals
 b: 20 square units
 c: ≈ 23.4 units
- **2-120.** height = 12 units, area = $\frac{1}{2}(12)(12+23) = 210$ square units
- **2-121. a:** $x = 28.5^{\circ}$, Triangle Angle Sum Theorem
 - **b:** $x = 23^{\circ}$, relationships used varies
 - c: $x = 68^{\circ}$, corresponding angles are equal because the lines are parallel and base angles of an isosceles triangle are equal.

2-122. 5° and 21°

Chapter 3

3.1.1:

- **3-5.** a: The enlarged rectangle will be 6 units by 8 units.
 b: A = 48 sq. un., P = 28 un.
 c: 5 units
- **3-6.** a: x = 18 b: x = 3 c: x = 6 d: x = 2
- **3-7.** a: ≈ 30°, ≈ 40°, ≈ 110°
 b: Obtuse scalene triangle
- **3-8.** a: $\frac{4}{5}$ b: $MU = \sqrt{41} \approx 6.40$ units
 - c: Δx and Δy are used for both, but are used differently: one is a ratio (slope) while the other is a length (distance).
- **3-9.** a: If a shape is an equilateral triangle, then it has 120° rotation symmetry.b: If a shape is a rectangle, then the shape is a parallelogram.
 - **c:** If a shape is a trapezoid, then the shape's area is half the sum of its bases multiplied by its height.

3.1.2:

- **3-17.** Result should be 12 units tall and 16 units wide.
- **3-18.** a: The 15 corresponds to the 6, while the 20 corresponds to the 8. Multiple equivalent ratios are possible. One possibility: $\frac{15}{6} = \frac{20}{8} = 2.5$
 - **b:** 25 and 10; $\frac{25}{10} = 2.5$; yes
- **3-19.** If *h* represents the number of hours and *t* represents the temperature, then t = 77 + 3h and t = 92 2h; h = 3 hours and the temperature will be 86°F.
- **3-20.** $x = 10^{\circ}, y = 61^{\circ}$
- **3-21.** No, this is not convincing. While the facts are each correct, the conclusion is not based on the facts. As stated in Fact #2, a square is a rectangle because it has four right angles. However, a rhombus does not have to have four right angles, so therefore there is not enough evidence that a rhombus is a rectangle.

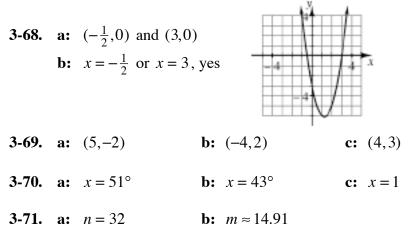
3.1.3:

- 3-27. a: Zoom factor: 0.5; The sides are only half as long, so the side corresponding to the 16 must become 8, and the side corresponding to the 11 must become 5.5.b: It is 1:1 because it is congruent.
- **3-28.** P(original) = 18 units and P(new) = 36 units; A(original) = 18 sq. units and A(new) = 72 sq. units. The enlarged perimeter is 2 times greater. The enlarged area is not 2 times greater. The enlarged area is 4 times greater.
- **3-29. a**: $x = \frac{42}{5} = 8.4$ **b**: m = 22 **c**: t = 12.5 **d**: $x = \frac{3}{2} = 1.5$
- **3-30.** a: $y = 3 \frac{3}{5}x$ c: $y = 3 + \frac{5}{3}x$ b: A = 7.5 sq. units, $P = 8 + \sqrt{34} \approx 13.8$

3-31.	a:	alt. int. angles	b: vertical angles			
	c:	corresponding angles	d: straight angle (or supplementary)			

3.1.4:

- **3-38.** a: f = 9 b: g = 18 c: $h = \frac{70}{3}$
- **3-39.** a: $180^{\circ} 38^{\circ} 63^{\circ} = 79^{\circ}$ and $180^{\circ} 38^{\circ} 79^{\circ} = 63^{\circ}$, corresponding angles are equal.
 - **b:** All unmarked angles are the same since the difference with 180° will be the same.
- **3-40.** a: Sandy's probability = $\frac{2}{4}$, while Robert's is $\frac{3}{5}$. Therefore, Robert has a greater chance.
- **3-41.** They will be 3 years old.
- **3-42.** a: The coordinates of the image are A(-6,-4), B(10,-4), C(10,6), D(2,12), and E(-6,6).
 - **b:** perimeters = 28 and 56 un; areas = 52 and 208 sq. units


3.2.1:

- 3-48. a: Yes, since all trees are green and the oak is a tree.
 b: No, only trees must be green according to the statement.
 c: No, the second statement reverses the first.
 3-49. a: yes, AA ~ b: yes, AA ~ or SSS ~ c: yes, zoom factor of 2.5 so SSS ~
 - **d:** no, since corresponding angles are not equal. Note that you can't apply zoom factor to angles.
- **3-50.** a: If lines are parallel, then alternate interior angles are equal.
 b: "If lines are parallel, then corresponding angles are equal" and "Lines are parallel → corresponding angles are equal."
- **3-51.** Perimeter = 44.9 units; Area = 94 square units
- **3-52.** a: $ABCD \sim EVOL$ b: $RIGHT \sim RONGW$ c: one possible answer: $\Delta TAC \sim \Delta GDO$

3.2.2:

- **3-59. a:** x = 20 **b:** w = 91
- **3-60.** Only (b) is possible. (a) can be rejected using Triangle Inequality or the Pythagorean Theorem, and (c) is rejected because the sum of the angles is 179°.
- **3-61. a:** reflection, rotation, and translation (students may not include translation, since it can be avoided with a specially-chosen point of rotation)
 - **b:** rotation and translation
 - c: rotation, dilated by zoom factor of 2 and translation
 - **d:** rotation, reflection, and reduced by zoom factor of 0.5 (Students may also write translation, or multiple reflections instead of rotation and reflection.)
- **3-62.** This reasoning is incorrect. The statement "it is raining" should be placed in the lower left oval, and "Andrea's flowers must be closed up" in the right oval.
- 3-63. a: possible
 - **b:** not possible because the sum of the measures of an obtuse and right angle is more than 180°
 - **c:** not possible because a triangle with sides of equal length obviously cannot have sides of different lengths
 - d: possible

3.2.3:

3-72. Missing side length of first rectangle must be 4 un because the perimeter is 26 un. Missing side length of second rectangle must be 9 un because the area is 36 sq.un. Since angles are equal and ratios of corresponding side lengths are equal, therefore, the rectangles are similar. In fact, they are congruent because r = 1.

3.2.4:

3-78.		scalene triangle not possible	b: isosceles triangled: equilateral triangle
3-79.		forces the lines to be para When solving a system o	I have the same slope but a different y-intercept. This allel and not intersect. f equations that has no solution, the equations possible equality, such as $3 = 0$.
3-80.	b:	not similar, interior angle must be similar, zoom fac not similar, interior angle	ctor 1.5
3-81.		rimeter = $10 + 10 + 4 + 3 +$ ea = 60 square units	4 + 3 + 4 = 38 units, height of triangle 8 units,
3-82.	b:	$3(4x - 12) = 180^{\circ}, x = 18$ $4.9^{2} - 3.1^{2} = x^{2}, x \approx 3.7$ $x + (180^{\circ} - 51^{\circ} - 103^{\circ}) +$	9

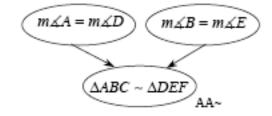
d: 3x - 2 = 2x + 9, x = 11

3.2.5:

- **3-88.** a: not possible because all three angles are 60° and therefore acute angles
 - **b:** possible
 - c: possible
 - **d:** not possible since a right triangle has a 90° angle and so not all of the angles are acute
- **3-89.** a: SSS ~ and SAS ~ (if students show that the triangles are right triangles)
 b: AA ~ and SAS ~
 a: None since there is not encode information
 - **c:** None since there is not enough information.
- **3-90.** a: ≈ 2.344 b: ≈ 0.667 c: 1.5 or -5 d: no solution
- **3-91.** Original: A = 135 sq. un., P = 48 un.; New: A = 15 sq. un., P = 16 un.

3-92. ≈ 13.2 miles

3.2.6:


- **3-96.** *x* = 137°, *y* = 76°
- **3.97.** h = 5 units, perimeter ≈ 24.2 units
- **3-98.** a: $-\frac{1}{4}$ b: $-\frac{1}{4}$ c: $-\frac{1}{4}$
- **3-99.** x = 8.4, y = 7.5, z = 9.6
- **3-100.** (x+2)(x+5) = 40, $x^2 + 7x 30 = 0$ so x = -10 or 3. Since x cannot be negative, x = 3. Therefore, the dimensions of the rectangle are 5 and 8 units.

Chapter 4

4.1.1:

4-6. a: $x = 11^{\circ}$ b: $x = 45^{\circ}$ c: $x = 30^{\circ}$ d: $x = 68^{\circ}$

4-7. a:

- **b:** Yes, because the triangles are similar (AA \sim) and the ratio of the corresponding side lengths is 1 (because AC = DF).
- **4-8.** a: Yes, she used the Pythagorean Theorem. b: $(x+1)^2 = x^2 + 2x + 1$ c: x = 24 d: 56 units

4-9.
$$x = 9, y = 4, z = 6\frac{2}{3}$$

4-10. Yes they are parallel because they have the same slope: $-\frac{3}{5}$.

4.1.2:

4-16. a: $\theta = 11^{\circ}, \frac{x}{95} \approx \frac{1}{5}, x \approx 18.46$ b: $a = b = 45^{\circ}$ c: $\frac{y}{70} \approx \frac{5}{2}, y \approx 175$

4-17. a: side ratio = 4:1 **b:** perimeter ratio is 4:1 **c:** 28

4-18. a: yes, AA ~ b: no, side ratios not equal $\frac{12}{64} \neq \frac{18}{98}$ c: cannot tell, not enough angle values given

4-19. $y = \frac{1}{3}x + 9$

4-20. Since the slope ratio for $11^{\circ} \approx 0.2$, $AB \approx 50$ units. The slope ratio for $68^{\circ} \approx 2.5$, so $BC \approx 4$ units. Thus, AB is actually longer.

4.1.3:

- **4-25.** They both could be. It depends on which angle is used as the slope angle.
- 4-26. a: Yes, since the slope ratio is greater than 1, the angle must be greater than 45°.
 b: Isiah is correct. Since the angle is less than 45°, the slope ratio must be less than 1.
 - c: Since the angle is greater than 45° , *x* must be less than 9.
- **4-27. b:** ratio for $11^{\circ} \approx \frac{1}{5}$, so $\frac{170}{x} \approx \frac{1}{5}$, and $x \approx 850$ feet.
- **4-28.** Answers vary, possible solution: square, equilateral triangle, and equilateral hexagon.
- **4-29.** $m \measuredangle ABC = 22^\circ$, $m \measuredangle BAC = 68^\circ$, sum = 90°; complementary

4.1.4:

- **4-36.** a: t = 780.178 b: $p \approx 3.215$ c: $b \approx 148.505$
- **4-37.** a: 24 b: $2x + 20^{\circ} + 3x + 20^{\circ} + x + 2x = 360^{\circ}$, $x = 40^{\circ}$ c: $\frac{5}{12} = \frac{3}{x}$, $x = \frac{36}{5} = 7.2$
- **4-38.** They are congruent. They are similar (SSS \sim) and the ratio is 1.
- **4-39. a:** It implies that because Brian is always late on Tuesday, then today must be Tuesday.
 - **b:** The "Brian is always late on Tuesdays" and "Today is Tuesday" ovals should be next to each other, both with arrows pointing to "Brian will be late today."
- **4-40.** Her father's eyes were ≈ 69.126 inches high.

4.1.5:

- **4-43.** a: either 3 or $\frac{1}{3}$ b: either 9 or $\frac{1}{9}$
- **4-44.** a: $3x + 3^{\circ} + x + 7^{\circ} = 90^{\circ}, x = 20^{\circ}$ b: $9x + 4^{\circ} = 3x + 14^{\circ}, x = \frac{10}{6} \approx 1.67^{\circ}$
- **4-45.** tuna & ice cream, or tuna & cookies; turkey & brownies, turkey & ice cream, or turkey & cookies; lasagna & brownies, lasagna & ice cream, or lasagna & cookies.
- **4-46.** ≈ 29.44 feet
- **4-47.** $10^2 + (x+3)^2 = 26^2$, x = 21

4.2.1:

4-54.	a:	12 boys	b: 22 girls	c:	$\frac{2}{3}$	d:	7 boys left, 23 students, so $\frac{7}{23}$	
4-55.	It a	assumes that	everyone who like	es bana	anas is	a m	onkey.	
4-56.	a: $x = 13$, Pythagorean Theorem b: $x = 80^{\circ}$, alternate interior angles and the Triangle Angle Sum Conjecture							
4-57.	≈]	1469.27 feet						
4-58.	 a: 10 combinations: (a, b, c), (a, b, d), (a, b, e), (a, c, d), (a, c, e), (a, d, e), (b, c, d), (b, c, e), (b, d, e), (c, d, e) b: For every 2 songs that are played, there are automatically 3 songs that are not. Therefore, this problem just switched the list of played and unplayed songs. 							
4.2.2	2:							

- **4-63.** 6 < *x* < 14
- **4-64.** 24 possible ways: ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, BACD, BADC, BCAD, BCDA, BDAC, BDCA, CABD, CADB, CBAD, CBDA, CDAB, CDBA, DABC, DACB, DBAC, DBCA, DCAB, DCBA
- 4-65. a: yes, ΔABD ~ ΔEBC by AA~
 b: yes. Since DB = 9 units (by the Pythagorean Thm), the common ratio is 1.
- **4-66.** LE = MS and LI = ES = MI
- **4-67.** $AB \approx 11.47$ un., $A \approx 97.47$ square units

4.2.3:

- 4-72. a: $slope = \frac{1}{2}$ b: It must be parallel to or coincide with the line on the graph.
- **4-73.** 12 seconds
- **4-74.** No. Triangle Inequality property prevents this because 7 + 10 < 20 and 20 10 > 7.
- **4-75.** a: x = 49 b: x = 2 c: $x = \frac{16}{3}$ d: x = -5 or 1
- 4-76. leg ≈ 29.44 units, hypotenuse ≈ 30.78 units, so the perimeter ≈ 69.22 units

4.2.4:

4-82. a: 20 **b:** $\frac{8}{20} = \frac{2}{5}$

4-83. Yes, they are similar due to AA ~ because $m \measuredangle B = m \measuredangle E$ and $m \measuredangle C = m \measuredangle C$ (triangles share an angle).

- **4-84.** $\frac{1}{6}$, If the die is "fair," each roll of the die is an independent event.
- **4-85.** Methods vary: $\theta = 68^{\circ}$ (could be found using corresponding and supplementary angles), $\alpha = 85^{\circ}$ (could be found using corresponding angles since lines are parallel.
- **4-86.** $x \approx 10.39, y = 12$

4.2.5:

- **4-91.** a: less than 45° b: equal to 45° c: more than 45°
- **4-92.** $\sqrt{6^2 3^2} = \sqrt{27}, \sqrt{9^2 3^2} = \sqrt{72}$. So perimeter is $\sqrt{27} + \sqrt{72} + 15 = 28.68$ units. The area is $(\sqrt{27} + \sqrt{72})(3) + 2 = 20.52$ sq. units.

4-93. 540°

- **4-94.** The slope is $-\frac{7}{10}$. Points will vary. A few possible solutions: (5,79), (15,72), (25,65), etc.
- **4-95.** a: A'(-3,-3), B'(9,-3), C'(-3,-6) b: A''(-3,3), B''(-3,-9), C''(-6,3) c: (9,3)